A cross-sectional study to evaluate the validity of a novel patient-reported outcome measure of medication adherence in Type 2 Diabetes.

Joshua Wells¹; Aya El-Husseini¹; Ali Jaffar¹; Kevin Dolgin²; Guillaume Hubert²; Reem Kayyali¹.

¹School of Life Sciences, Pharmacγ and Chemistrγ, Kingston Universitγ, Kingston-upon-Thames, KT1 2EE ²Observia, Paris, France

Introduction

Despite improvements in the management of patients living with Type 2 Diabetes (T2D), a holistic understanding of the factors that contribute to medication adherence (MA) is still lacking. A number of methods have been proposed for the assessment of MA, namely Patient Reported Outcome Measures (PROMs), such as:

- MMAS¹
- BeMQ²
- MARS³

Adherence reporting with PROMs is subject to moderate to high variability depending on the measure used due to their assessment of only one or two MA factors⁴⁻⁸.

This study has evaluated a novel holistic PROM as part of a wider international research initiative focused on T2D which assesses four key factors of MA referred to as **Social (S), Psychological (P), Usage (U) and Rationale (R), in short SPUR.**

Aim

To compare the validity of **SPUR against previously validated PROMs** in patients with T2D.

BeMQ-General

BeMQ-Specific

MARS-10

Methods

What:
 Prospective cross-sectional studγ
 Face-to-face survey using convenience sampling

The survey consisted of questions relating to socio-demographic and clinical data, the SPUR tool and three previously validated PROMs (BeMQ-General[®], MARS -10[®] and BeMQ-Specific[®]) as comparators to evaluate factors S, P, U and R respectively.

SPUR

The **Medication Possession Ratio (MPR)**, a measure of a patient's pill count in a given time period, was calculated using **6 months of patient medication history** with respect to **anti-hyperglycaemic medicines only**. Self-reported HbA1c was also collected. Pearson's correlation coefficients (r) were calculated to determine the strength of association between the validated PROMs and SPUR, with T tests used as a measure of significance (p=<0.05) as an evaluation of validity for SPUR.

Who:

- Patients living with T2D
- Minimum of one anti-glycaemic agent prescribed for 6 months

Results

The study demonstrated a moderate response rate with 21.6% (n=149/690) of participants approached in community pharmacies completing the survey. Demographic characteristics are reported in Table 1. Body Mass Index (BMI) data were available for 88.6% (n=132) of the sample with 42.4% (n=56/132) reporting a BMI >30.

Table 1 - Demographic Characteristics (n=149)

Gender	Ethnicity	Education	Age (Years)	Annual Income
--------	-----------	-----------	-------------	---------------

In ascending order, moderate to strong positive correlations were observed between SPUR and the comparative PROMs for factors P (r=0.464, p=<0.0001), U (r=0.595, p=<0.0001) and R (r=0.719, p=<0.0001), indicating SPUR to be a reliable measure of those MA factors. (Table 2)

Table 2 - Comparison of Pearson's Correlation Coefficients for PROMs (r)

Tools	BeMQ-General	MARS	BeMQ-Specific

Male	78 (52,3%)	White	72 (48.3%)	Nil Formal	30 (20.1%)	18-29	3 (2,0%)	<£14,999	19 (12.8%)
Female	71 (47,6%)	Mixed/ Multiple ethnic groups	6 (4,0%)	GSCE or eq*	27 (18.1%)	30-39	3 (2,0%)	£15-£24,999	29 (19.5%)
Other	0	Asian/Asian British	52 (34,9%)	A-Level or eq*	27 (18.1%)	40-49	28 (18,8%)	£25-£34,999	19 (12.8%)
		Black/ Afri- can/ Caribbean/ Black British	1 (6,7%)	Bachelors or eq*	44 (29.5%)	50-59	32 (21,5%)	£35-£44,999	19 (12.8%)
		Other ethnic group	9 (6,1%)	Postgraduate or eq*	14 (9.4%)	60-69	60 (40,1%)	£45-£54,999	5 (3.4%)
				Other	7 (4.7%)	70-79	16 (10,7%)	£55-£64,999	5 (3.4%)
						>80	7 (4,7%)	£65-£74,999	Ο
								>£75,000	Ο
								Unemployed	10 (6.7%)
								Retired	43 (28.9%)

*or equivalent

S ocial	*			
P sychographic		0.464 (p<0.0001)		
Usage			0.595 (p<0.0001)	
Rationale				0.719 (p<0.0001)

*No comparator available at this stage of the study

When assessing MA objectivelγ, SPUR demonstrated the strongest correlation (r=0.281, p=<0.0001) to MPR compared with the validated tools, with MARS-10[®] as the closest comparator (r=0.266, p=0.001). Despite this, SPUR did not overestimate MA; 83.8% (n=125) of the sample were identified as adherent based on MPR compared

Conclusion

The study has demonstrated SPUR to be a reliable novel PROM when holistically assessing factors related to MA against previously validated tools in T2D.

The provision of a holistic measure such as SPUR can improve the design of personalised interventions which may prove to be more impactful in managing the burden of chronic disease than novel medical treatments, a notion shared by the WHO⁹. The study incorporated both validated PROMs and two objective measures of MA, however results should be treated cautiously owing to the limited study sample size. Further work will look to expand the study both in the UK and internationally as part of the wider SPUR research project in primary and secondary care settings.

to 53% (n=79) with SPUR. The latter more closelγ reflecting HbA1c data which identified 55.4% (n=31/56) as adherent. (Figure 1)

References

- 1. Moriskγ, D.E., Green, L.W. and Levine, D.M., 1986. Concurrent and predictive validitγ of a self-reported measure of medication adherence. Medical care, pp.67-74.
- 2. Horne, R., Weinman, J. and Hankins, M., 1999. The beliefs about medicines questionnaire: the development and evaluation of a new method for assessing the cognitive representation of medication. Psγchology and health, 14(1), pp.1-24.
- 3. Thompson, K., Kulkarni, J. and Sergejew, A.A., 2000. Reliabilitγ and validitγ of a new Medication Adherence Rating Scale (MARS) for the psγchoses. Schizophrenia research, 42(3), pp.241-247.
- 4. Cook, C.L., Wade, W.E., Martin, B.C. and Perri III, M., 2005. Concordance among three self-reported measures of medication adherence and pharmacγ refill records. Journal of the American Pharmacists Association, 45(2), pp.151-159.
- 5. Hansen, R.A., Kim, M.M., Song, L., Tu, W., Wu, J. and Murraγ, M.D., 2009. Adherence: Comparison of methods to assess medication adherence and classify nonadherence. Annals of Pharmacotherapγ, 43(3), pp.413-422.
- 6. Velligan, D.I., Wang, M., Diamond, P., Glahn, D.C., Castillo, D., Bendle, S., Lam, Y.F., Ereshefskγ, L. and Miller, A.L., 2007. Relationships among subjective and objective measures of adherence to oral antipsγchotic medications. Psychiatric Services, 58(9), pp.1187-1192.
 7. Pearson, C.R., Simoni, J.M., Hoff, P., Kurth, A.E. and Martin, D.P., 2007. Assessing antiretroviral adherence via electronic drug monitoring and self-report: an examination of key methodological issues. AIDS and Behavior, 11(2), p.161.
- 8. Dunbar-Jacob, J., Sereika, S.M., Houze, M., Luγster, F.S. and Callan, J.A., 2012. Accuracγ of measures of medication adherence in a cholesterol-lowering regimen. Western journal of nursing research, 34(5), pp.578-597.
- 9. Eduardo Sabaté (WHO/NMH/CCH). Adherence to long-term therapies: policy for action. World Heal Organ. Published online 2001.